DSpace IF Baiano Comunidade Campus Serrinha Serrinha - Dissertações do Mestrado em Ciências Ambientais
Use este identificador para citar ou linkar para este item: http://repositorio.ifbaiano.edu.br/jspui/handle/123456789/25
Registro completo de metadados
Campo DCValorIdioma
dc.creatorOliveira, Adson Lima de-
dc.date.accessioned2024-08-28T13:21:18Z-
dc.date.available2024-08-28-
dc.date.available2024-08-28T13:21:18Z-
dc.date.issued2023-07-28-
dc.identifier.urihttp://repositorio.ifbaiano.edu.br/jspui/handle/123456789/25-
dc.description.abstractBiochar is a product obtained from the pyrolysis of different raw materials, which, depending on its composition and preparation temperature, has a high concentration of carbon, porosity, specific surface and minerals, which highlights it as an input with potential for various applications . The objective of this study was to develop biochars from the pyrolysis of sisal residue, neem, jurema and jurubeba biomass and evaluate their physicochemical characteristics as potential soil conditioners. The biomasses were collected and left to air dry, in small pieces, before carbonization. The pyrolysis process was carried out in an iron furnace, with the adaptation of a 200L drum, which had a chimney attached to its upper part and a 50L drum was inserted inside with the function of storing the biomass to be pyrolyzed. For each type of biomass, pyrolysis was carried out in five repetitions. The temperature, carbonization time, physicalchemical attributes of biomass and biochars were evaluated. The direct influence of the pyrolysis temperature and time and also of the raw material on the production of biochars was observed. The highest pyrolysis efficiency was for sisal residue with 60.2% of its biomass transformed into biochar. There was an increase in pH after carbonization of all biomasses and the highest value was observed for neem biochar with pH 10. Jurema's biomass and biochar samples stood out with the highest percentage of total organic matter with 94% and 81 % and highest nitrogen content with 1.95% and 2.66%, respectively. Jurubeba biomass and biochar obtained the highest potassium value with 3.63% and 1.88%, respectively, in addition to having the highest water retention capacity with 124% of available water, in relation to its mass. The biomass of sisal residue presented a high value of manganese with 294.2 mg kg-1, Zinc 84.40 mg kg-1 and Calcium 5.92%, while in biochar, there was an increase for these minerals with values of 334.0 mg kg-1, 134.10 mg kg-1 and 10.61%, respectively. It is concluded that different biomasses have potential for producing biochars, and their quality depends mainly on the pyrolysis process and the source of biomass used. The biochars analyzed presented physical and chemical characteristics with the potential to be soil conditioners.pt_BR
dc.languageporpt_BR
dc.publisherInstituto Federal Baianopt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectbiomassapt_BR
dc.subjectpirólisept_BR
dc.subjectfixação de carbonopt_BR
dc.titleCaracterização físico-química de biocarvões com potencial para condicionador de solopt_BR
dc.title.alternativePhysical-chemical characterization of biochar with potential for soil conditionerpt_BR
dc.typeDissertaçãopt_BR
dc.creator.Latteshttp://lattes.cnpq.br/6821291292439945pt_BR
dc.contributor.advisor1Sampaio, Antônio Helder Rodrigues-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8440563577100110pt_BR
dc.contributor.advisor-co1Santos, Delfran Batista dos-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/5305388524205895pt_BR
dc.contributor.referee1Matias, Maria Iraildes de Almeida Silva-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/6689995377519435pt_BR
dc.contributor.referee2Lima Júnior, Cristovam Alves de-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/7416458496019987pt_BR
dc.description.resumoO biocarvão é um produto obtido da pirólise de diferentes matérias-primas, que dependendo da sua composição e temperatura de preparo, possui elevada concentração de carbono, porosidade, superfície específica e minerais, que o destaca como um insumo com potencial para diversas aplicações. O objetivo deste estudo foi desenvolver biocarvões a partir da pirólise do resíduo do sisal, biomassa de nim, jurema e jurubeba e avaliar suas características físico-químicas como potencial para condicionador de solos. As biomassas foram coletadas em região de Caatinga no estado da Bahia e postas para secar ao ar, em pequenos pedaços, antes da carbonização. O processo de pirólise foi realizado em forno de ferro, com adaptação de um tambor de 200L, o qual foi acoplado uma chaminé na sua parte superior e no seu interior foi inserido um tambor de 50L com a função de armazenar a biomassa a ser pirolisada. Para cada tipo de biomassa, procedeu-se a pirólise em cinco repetições. Foram avaliados a temperatura, o tempo de carbonização e atributos físico-químicos das biomassas e dos biocarvões. Observou-se a influência direta da temperatura e tempo de pirólise e também da matéria-prima na produção dos biocarvões. A maior eficiência de pirólise foi do resíduo de sisal com 60,2% da sua biomassa transformada em biocarvão. Houve um aumento do pH após a carbonização de todas as biomassas e o maior valor foi observado para o biocarvão de nim com pH 10. As amostras de biomassa e biocarvão de Jurema destacaram-se com maior percentual de matéria orgânica total com 94% e 81% e maior teor de nitrogênio com 1,95% e 2,66%, respectivamente. A biomassa e biocarvão de jurubeba obtiveram maior valor de potássio com 3,63% e 1,88%, respectivamente, além de destacar com a maior capacidade de retenção de água com 124% de água disponível, em relação a sua massa. A biomassa do resíduo de sisal apresentou elevado valor de manganês com 294,2 mg kg-1 , Zinco 84,40 mg kg-1 e Cálcio 5,92%, enquanto no biocarvão, houve um acréscimo para estes minerais com valores de 334,0 mg k -1g, 134,10 mg kg-1 e 10,61%, respectivamente. Conclui-se que as diferentes biomassas apresentam potencial para produção de biocarvões, e sua qualidade depende principalmente do processo de pirólise e da fonte de biomassa utilizada. Os biocarvões analisados apresentaram características físicas e químicas com potencial para serem condicionadores de solos.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentCampus Serrinhapt_BR
dc.publisher.programMestrado Profissional em Ciências Ambientaispt_BR
dc.publisher.initialsIFBaianopt_BR
dc.subject.cnpqCNPQ::CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::CONSERVACAO DA NATUREZApt_BR
dc.relation.referencesABREU, K. C. L. de M. Epidemiologia da podridão vermelha do sisal no Estado da Bahia. Tese (Doutorado) – Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, 2010. AGUIAR, A., FERRAZ, A.; Revisão: Mecanismos envolvidos na biodegradação de materiais lignocelulósicos e aplicações tecnológicas correlatas. Quim. Nova, 34:1729-1738, 2011. AKHTAR, S.S. et al. Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. Functional Plant Biology, v.42, n. 8, p. 770–781, 2015. AMONETTE, J. E.; JOSEPH, S. Characteristics of biochar: microchemical properties. In: LEHMANN, J.; JOSEPH, S. (Ed.). Biochar for environmental management science and technology. London: Earthscan, 2009. p. 34-51. ANTAL, M. J. and GRØNLI, M. (2003) ‘The art, science, and technology of charcoal production’, Industrial Engineering and Chemical Research, vol 42, pp1619–1640 ASTM D 1762-84, Standard Test Methods Small Clear Specimens of Timber. 1990 ASTM - D 3174 – 04 Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal.2004 ATKINSON, C. J.; FITZGERALD, J. D.; HIPPS, N. A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and Soil v. 337, n. 1-2, p. 1–18 , 30 jun. 2010. Disponível em: <http://link.springer.com/10.1007/s11104- 010-0464-5>. Acesso em: 07 dez. 2022. BAGREEV, A., BANDOSZ,T. J.; LOCKE, D. C. (2001) ‘Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer’, Carbon, vol 39, pp1971–1977. BALDOCK, J. A.; SMERNIK, R. J. (2002) ‘Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood’, Organic Geochemistry, vol 33, pp1093– 1109 BALLIETT, A. Terra Preta. Magic Soil of the Lost Amazon. ACRES, Austin, TX, V. 37, n. 2, 2007. BARRÊTO, A.F.; ARAÚJO, E.; BONIFÁCIO, B.F. Eficiência de extratos de Agave sisalana (Perrine) sobre o ácaro rajado Tetranychus urticae (Koch) e ocorrência de fitotoxidez em plantas de algodoeiro (Gossypium hirsutum L. r latifolium Hutch). Revista Brasileira de Agroecologia, v. 5, p. 207-215, 2010. Disponível em: http://www.scielo.br/scielo.php?script=sci_nlinks&ref=000080&pid=S1806- 6690201300040001200003&lng=pt. Acesso em 15 de abril 2022 63 BASU, P. Biomass Gasification, Pyrolysis and Torrefaction:Practical Design and Theory Pyrolysis. Elsevier Inc., 2.ed. 2013. p. 548. BELTRÃO, N. E. M. A planta. In: ANDRADE, W. (Ed.). O Sisal do Brasil. 1.ed. Salvador: SINDIFIBRAS; Brasília: APEX-Brasil, 2006 BINKLEY, D., RICHTER, J., DAVID, M. B.; CALDWELL, B. (1992) ‘Soil chemistry in a loblolly/longleaf pine forest with interval burning’, Ecological Applications, vol 2, pp157–164 BIRD, M. I., MOYO, C.,VEENENDAAL, E. M., LLOYD, J.; FROST, P. (1999) ‘Stability of elemental carbon in savanna soil’, Global Biogeochemical Cycles, vol 13, pp923–932 BLANCO-CANQUI, H., 2017. Biochar and Soil Physical Properties. Soil Sci. Soc. Am. J. 81, 687. https://doi.org/10.2136/sssaj2017.01.0017 BORNERMANN, L.; KOOKANA, R. S.; WELP, G. (2007) ‘Differential sorption behavior of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood’, Chemosphere, vol 67, pp1033–1042 BOTURA, M.B.; SANTOS, J.D.G.; SILVA, G.D.; LIMA, H.G.; OLIVEIRA, J.V.A.; ALMEIDA, M.A.O.; BATATINHA, M.J.M.; BRANCO, A. In vitro ovicidal and larvicidal activity of Agave sisalana Perr. (sisal) on gastrointestinal nematodes of goats. Veterinary Parasitology, 2013; v. 192, p. 211–217. Disponível em: http://dx.doi.org/10.1016/j.vetpar.2012.10.012. Acesso em 15 de abril 2022 BOURKE, J.; MANLEY-HARRIS, M.; FUSHIMI, C.; DOWAKI, K.; NUNOURA,T.; ANTAL, M. J. (2007) ‘Do all carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized charcoal’, Industrial Engineering and Chemical Research, vol 46, pp5954–5967 BOURKE, J. (2006) Preparation and Properties of Natural, Demineralized, Pure, and Doped Carbons from Biomass; Model of the Chemical Structure of Carbonized Charcoal, MS thesis, The University of Waikato, New Zealand, http://adt.waikato.ac.nz/uploads/approved/adt– ow20070222.152711/public/02whole.pdf.pdf , accessed 1 julho 2023 BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Manual de hortaliças não- - convencionais. Ministério da Agricultura, Pecuária e Abastecimento/ Secretaria de Desenvolvimento Agropecuário e Cooperativismo. – Brasília: Mapa/ACS, 2010. BRASIL. Ministério da Agricultura. Especificações para padronização, classificação e comercialização interna do sisal bruto. Brasília, 1987. 7 p. BRIDGWATER, A.V.; PEACOCKE, G.V. C. (2002) ‘Fast pyrolysis processes for biomass’, Renewable and Sustainable Energy Reviews, vol 4, pp1–73 BRIDGWATER, A.V. Progress in Thermochemical Biomass Conversion. Blackwell Science Oxford, 2001 64 BRIDGWATER, A.; BOOCOCK,D.G. B. (2006) Science in Thermal and Chemical Biomass Conversion, CPL Press, Newbury, UK. BRIDLE,T. R.; PRITCHARD D. (2004) ‘Energy and nutrient recovery from sewage sludge via pyrolysis’, Water Science and Technology, vol 50, D. and Engelhard M. H. (2006) ‘Oxidation of black carbon by biotic and abiotic processes’, Organic Geochemistry, vol 37, pp1477–1488 BRODOWSKI, S.; AMELUNG,W.; HAUMAIER, L.; ABETZ, C.; ZECH,W. (2005) ‘Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning eléctron microscopy and energy-dispersive X-ray spectroscopy’, Geoderma, vol 128, pp116–129 BROWN, R. A., KERCHER, A. K. NGUYEN,T. H., NAGLE,D. C., BALL,W. B. (2006) ‘Production and characterization of synthetic wood chars for use as surrogates for natural sorbents’, Organic Geochemistry, vol 37, pp321–333 BRUSSAARD, L., BOUWMAN, L. A., GEURS, M., HASSINK, J., ZWART, K. B. (1990) ‘Biomass, composition and temporal dynamics of soil organisms of a silt loam soil under conventional and integrated management’, Netherlands Journal of Agricultural Science, vol 38,pp282–302 BRUUN, E.W., Hauggaard-Nielsen, H., Ibrahim, N., Egsgaard, H., Ambus, P., Jensen, P.A., Dam-Johansen, K. Influence of fast pyrolysis temperature on biochar labile fraction and shortterm carbon loss in a loamy soil. Biomass and Bioenergy, v. 35, p.1182-1189, 2011. BURRELL, L.D., ZEHETNER, F., RAMPAZZO, N., WIMMER, B., SOJA, G. 2016. Long-term effects of biochar on soil physical properties. Geoderma 282, 96–102. https://doi.org/10.1016/j.geoderma.2016.07.019 CALIXTO, G. Q. Extrato fenólico renovável a partir da carbonização da Jurema Preta (Mimosa tenuiflora) / Guilherme Quintela Calixto. - 2020. 72f.: il. Dissertação (Mestrado)- Universidade Federal do Rio Grande do Norte, Centro de Tecnologia, Programa de PósGraduação em Engenharia Química, Natal, 2020. CALLOW, R.K.; CORNFORTH, J.W. & SPENSLEY, P.C.A source of hecogenin. Chemistry and Industry, London, n.33: 699-700, 1951. CALVELO PEREIRA R, KAAL J, CAMPS-ARBESTAIN M, PARDO LORENZO R, AITKENHEAD W, HEDLEY M, MACÍAS F, HINDMARSH J, MACIÁ-AGULLÓ JA (2011) Contribution to characterisation of biochar to estimate the labile fraction of carbon. Organic Geochemistry 42, 1331–1342. doi:10.1016/j.orggeochem.2011.09.002. CAMPS-ARBESTAIN M, AMONETTE JE, SINGH B, WANG T, SCHMIDT HP (2015) A biochar classifi cation system and associated test methods. In Biochar for Environmental Management: Science, Technology and Implementation. 2nd edn. (Eds J Lehmann, S Joseph) pp. 165–194. Routledge, London CANTRELL, K. B.; HUNT, P. G.; UCHIMIYA, M.; NOVAK, J. M.; RO, K. S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology, v. 107, p. 419-428, 2012. CARTER, M.R.; GREGORICH, E.G. 2007. Soil Sampling and Methods of Analysis. 1-1263p. CASTALDI, S., RIONDINO, M., BARONTI, S., ESPOSITO, MARZAIOLI, R., RUTIGLIANO, F.A., VACCARI, F.P., MIGLIETTA, F. Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere, v. 85, p. 1464-1471, 2011. CHEN, R.; LI, Q.; XU, X.; ZHANG, D. Comparative pyrolysis characteristics of represen tative commercial thermosetting plastic waste in inert and oxygenous atmosphere. Fuel, v ol. 246, p. 212221, 2019. https://doi.org/10.1016/j.fuel.2019.02.129 CHENG C-H, LEHMANN J, TH IES JE, BURTON SD, ENGELHARD MH (2006) Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry 37, 1477–1488. doi:10.1016/j.orggeochem.2006.06.022. CHENG, C.-H., LEHMANN, J. AND ENGELHARD, M. (2008) ‘Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence’, Geochimica et Cosmochimica Acta, vol 72, pp1598–1610 CHURKA BLUM S, LEHMANN J, SOLOMON D, CAIRES EF, ALLEONI LRF (2013) Sulfur forms in organic substrates aff ecting S mineralization in soil. Geoderma 200–201, 156–164. doi:10.1016/j.geoderma.2013.02.003. COIMBRA, R. 1958. Notas de fitoterapia. Laboratório Clínico Silva Araújo, Rio de Janeiro. CORREIA, P. Dicionário das Plantas Úteis do Brasil, Ed. Imprensa Nacional, Rio de Janeiro, v. 3, p. 545, 1984. COLEMAN, D. C. (1986) ‘The role of microfloral and faunal interactions in affecting soil processes’, in M. J. Mitchell and J. P. Naka (eds) Microflora and Faunal Interactions in Natural and Agro-Ecosystems, Martinus Nijhoff/Junk, Dordrecht,The Netherlands, pp317–348 CORDULA, E.; MORIN, M. P.; ALVES, M. Morfologia de frutos e sementes de Fabaceae ocorrentes em uma área prioritária para a conservação da Caatinga em Pernambuco, Brasil. Rodriguésia, Rio de janeiro, v. 65, n.2. 2014. COSTA, A.F. Farmacognosia. 3 ed. Lisboa: Fundação Calouste-Gulbenkian, v. 2. p. 712- 713, 1975 CPRM – Serviço Geológico do Brasil Projeto Cadastro de Fontes de Abastecimento por Água Subterrânea Diagnóstico do Município de Serrinha Estado da Bahia / Organizado [por] Ângelo T. Vieira, Felicíssimo Melo, Hermínio Brasil V. Lopes, Hermínio Brasil V. Lopes, José C. Viégas Campos, José T Guimarães, Juliana M. da Costa, Luís Fernando C. Bomfim, Pedro Antonio de A. Couto, Sara Maria Pinotti Benvenuti . Salvador:CPRM/PRODEEM, 2005 CROMBIE K, MAŠEK O, SOHI SP, BROWNSORT P, CROSS A (2013) Th e eff ect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy 5, 122–131. doi:10.1111/gcbb.12030. CZIMCZIK, C. I. AND MASIELLO, C.A. (2007) ‘Controls on black carbon storage in soils’, Global Biogeochemical Cycles, vol 21, pGB3005 DAI, L.; LI, H.; TAN, F.; ZHU, N.; HE, M.; HU, G. Biochar: a potential route for recycling of phosphorus in agricultural residues. GCB Bioenergy, v. 8, n. 5, p. 852-858, 2016. DAMASCENO, J.C.A.; SOARES, A.C.F.; JESUS, F.N.; SANT’ANA, R.S. Sisal leaf decortication liquid residue for controlling Meloidogyne javanica in tomato plants. Horticultura Brasileira, v. 33, p. 155-162, 2015. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-05362015000200004. http://dx.doi.org/10.1590/S0102-053620150000200004. Acesso em: 25 de jun. 2022 DARI, B.; NAIR, V. D.; HARRIS, W. G.; NAIR, P. K. R.; SOLLENBERGER, L.; MYLAVARAPU, R. Relative influence of soil- vs. biochar properties on soil phosphorus retention. Geoderma, v. 280, p. 82–87, 2016. DEMPSTER, D.N., GLEESON, D.B., SOLAIMAN, Z.M., JONES, D.L., MURPHY, D.V. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant and Soil, v. 354, 311-324, 2011. DE KOK LJ (1993) Sulfur nutrition and assimilation in higher plants. Workshop on Sulfur Metabolism in Higher Plants 1992. Garmisch-Partenkirchen, Germany. SPB Academic. DELUCA,T. H., MACKENZIE, M. D., GUNDALE, M. J. AND HOLBEN,W. E. (2006) ‘Wildfireproduced charcoal directly influences nitrogen cycling in ponderosa pine forests’, Soil Science Society of America Journal, vol 70, pp448–453 DELUCA,T. H. AND SALA, A. (2006) ‘Frequent fire alters nitrogen transformations in ponderosa pine stands of the inland northwest’, Ecology, vol 87, pp2511–2522 DELUCA,T. H., MACKENZIE, M. D., GUNDALE, M. J. AND HOLBEN,W. E. (2006) ‘Wildfireproduced charcoal directly influences nitrogen cycling in forest ecosystems’, Soil Science Society America Journal, vol 70, pp448–453 DEMIRBAS, A. AND ARIN, G. (2002) ‘An overview of biomass pyrolysis’, Energy Sources, vol 24, pp471–482 DIAS, J. M., ALVIM-FERRAZ, M. C. M., ALMEIDA, M. F., RIVERA-UTRILLA, J. AND SANCHEZ-POLO, M. (2007) ‘Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review’, Journal of Environmental Management, vol 85, pp833– 846 DIAS, N. S.; LACERDA, C. F. Manejo da salinidade na agricultura: Estudos básicos e aplicados. Fortaleza: Instituto Nacional de Ciência e Tecnologia em Salinidade. p. 129-140, 2010. DIAZ, LF, GOLUEKE, DG E SAVAGE, GM (1986) 'Balanço de energia na produção e uso de composto', em M. de Bertoldi, MP Ferranti, P. L'Hermite e F. Zucconi (eds) Composto: Produção, Qualidade e Uso, Atas de um simpósio organizado pela Comissão das Comunidades Européias, Udine, Itália, Elsevier, Holanda, pp6–19. DOMINGUES, L. F.; BOTURA, M. B.; CRUZ, A. C. F. G.; YUKI, C. C.; SILVA, G. D.; COSTA, M. S.; et al., ; Evaluation of anthelmintic activity of liquid waste of Agave sisalana (sisal) in goats. Revista Brasileira de Parasitologia Veterinária, v. 19, p. 270- 272, 2010. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1984-29612010000400018. http://dx.doi.org/10.1590/S1984-29612010000400018. Acesso em: 16 de ago. 2022 DOWNIE, A.; CROSKY, A.; MUNROE, P. Physical properties of biochar. in Lehmann J, Joseph S (Eds) Biochar for Environment Management, Earthscan Publishers Ltd, London, Capítulo 2, 2009 DRUFFEL, E. R. M. (2004) ‘Comments on the importance of black carbon in the global carbon cycle’, Marine Chemistry, vol 92, pp197–200 EMBRAPA - EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIAAgrossilvipastoril (MT), Biocarvão feito com resíduos é testado como condicionador de solo - Portal Embrapa - 2012. Acesso em 13 abril 2022 EMBRAPA. JUREMA PRETA - Portal Embrapa – Disponível em : Jurema Preta - Portal Embrapa. Acesso em 18 de Junho de 2023 ETIÉGNI L, CAMPBELL AG (1991) Physical and chemical characteristics of wood ash. Bioresource Technology 37, 173–178. doi:10.1016/0960-8524(91)90207-Z. EZAWA,T.,YAMAMOTO, K. AND YOSHIDA, S. 2002 ‘Enhancement of the effectiveness of indigenous arbuscular mycorrhizal fungi by inorganic soil amendments’, Soil Science and Plant Nutrition, vol 48, pp897–900 FALCÃO, N. P. S.; BORGES, L. F. Efeito da fertilidade de terra preta de índio da Amazônia Central no estado nutricional e na produtividade do mamão hawaí (Caricapapaya L.). Acta Amazônica. v. 36, p. 401-406, 2006. FAO (United Nations Food and Agriculture Organization) (1983) Simple Technologies for Charcoal Making, FAO FORESTRY Paper 41, FAO, Rome, www.fao.org/docrep/S5328e/x5328e00.htm, accessed 16 junho 2023 FAO STAT Database. Disponível em :http://faostat.fao.org. Acesso em 02 de outubro de 2022 FARMACOPÉIA DOS ESTADOS UNIDOS DO BRASIL. 1959. 2. ed. São Paulo, Ed. Gráfica Siqueira. p.543-544 FLORA DO BRASIL 2018 em construção. Jardim Botânico do Rio de Janeiro. Disponível em: <http://floradobrasil.jbrj.gov.br/ >. Acesso em: 30 Mar. 2023. FORBES, M. S., RAISON, R. J., SKJEMSTAD, J.O. (2006) ‘Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems’, Science of the Total Environment, vol 370, pp190–206. FORNI-MARTINS, E.R.; MARQUES, M.C.M.; LEMES, M.R. Biologia floral e reprodução de Solanum paniculatum L. (Solanaceae) no estado de São Paulo, Brasil. Revista Brasileira Botânica, 21(2), 117-24, 1998 Franklin, R. E. (1951) ‘Crystallite growth in graphitizing and non–graphitizing carbons’, Proceedings of the Royal Society, vol A209, pp196–218 FREITAS, M. C. M. B. Produção de biocarvão a partir de diferentes fontes de biomassa. In: IX Encontro Brasileiro de Substancia Humicas, 9., 2011, Aracaju-sergipe: Embrapa, 2011. 4 p. Disponível em: . Acesso em: 18 maio 2023. FUERTES AB, CAMPS-ARBESTAIN M, SEVILLA M, MACIÁ-AGULLÓ JA, FIOL S, LÓPEZ R, SMERNIK RJ, AITKENHEAD WP, ARCE F, MACÍAS F (2010) Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Soil Research 48, 618–626. doi:10.1071/SR10010 FUKUSHI, Y.K.M. et al. Jurubeba (Solanum scuticum). In: VIEIRA, R.F.; CAMILLO, J.; CORADIN, L. Espécies nativas da flora brasileira de valor econômico atual ou potencial: Plantas para o Futuro: Região Centro-Oeste. Ministério do Meio Ambiente. Secretaria de Biodiversidade. Brasília, DF: MMA, 2016 FUKUYAMA, K., KASAHARA,Y., KASAHARA,N.,OYA, A., NISHIKAWA, K. (2001) ‘Smallangle Xray scattering study of the pore structure of carbon fibers prepared from a polymer blend of phenolic resin and polystyrene’, Carbon, vol 39, pp287–290 GALINATTO, S. P.; YODER, JONATHAN, K. J.; GRANATSTEIN, D. The economic value of biochar in crop production and carbon sequestration. Energy Policy, 39: 2011, 6344-6350. GASPAR, Lúcia. Jurema. Pesquisa Escolar Online, Fundação Joaquim Nabuco, Recife. Disponível em: <http://basilio.fundaj.gov.br/pesquisaescolar/>. Acesso em: 16 jun. 2023. GASKIN JW, STEINER C, HARRIS K, DAS KC, BIBENS B (2008) Eff ect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE 51, 2061– 2069. doi:10.13031/2013.25409. GEE GW, BAUDER, J. W. Particle-size Analysis. In: KLUTE, A.; GEE, G. W.; BAUDER, J. W. Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods. Madison: Sssa Book Series, 1986. Cap. 15. p. 383-411. GLAB, T.; PALMOWSKA, J.; ZALESKI, T.; GONDEK, K. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma, v. 281, p. 11–20, 2016. GLASER, B., HAUMEIER, L., GUGGENBERGER,G. AND ZECH,W. (2001) ‘The “Terra Preta” Phenomenon: A model for sustainable agriculture in the humid tropics’, Naturwissenschaften, vol 88, pp37–41 GLASER, B., LEHMANN, J. AND ZECH,W. (2002) ‘Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review’, Biology and Fertility of Soils, vol 35, pp219–230. GLASER, B.; WOODS, W.I. (Eds.). Amazonian Dark Earths: origin, properties, and management. Dordrecht: Kluwer Academic Publishers. p.125-139. 2003. GOLDBERG, E.D. (1985) Black Carbon in the Environment, John Wiley and Sons, Inc, New York, NY GONDIM, T. M. S; SOUZA, L. C. Caracterização de Frutos e Sementes de Sisal. Circular técnica (EMBRAPA). Campina Grande, PB, Novembro, 2009 GUNDALE, M.J., DELUCA,T.H. (2006) ‘Temperature and substrate influence the chemical properties of charcoal in the ponderosa pine/Douglas-fir ecosystem’, Forest Ecology and Management, vol 231, pp86–93 GRABER, E.R. Biochar for 21st century challenges: Carbon sink. Energy source and soil conditioner. 2009. Disponível em: . Acesso em: 20 set. 2022. GROHMANN, F.; RAIJ, B. VAN. Dispersão mecânica e pré-tratamento para análise granulométrica de Latossolos Argilosos. Rev. Bras. Cienc. Solo.1977; 1:52-53. GUNAMANTHA, I. M.; WIDANA, G. A. B. Characterization the potential of biochar from cow and pig manure for geoecology application. Earth and Environmental Science, v. 131, n. 1, p. 1-6, 2018. GUNES, A.; INAL, A.; TASKIN, M. B.; SAHIN, O.; KAYA, E. C.; ATAKOL, A. Effect of phosphorus-enriched biochar and poultry manure on growth and mineral composition of lettuce (Lactuca sativa L. cv.) grown in alkaline soil. Soil Use and Management, v. 30, n. 2, p. 182-188, 2014. HANKE, D. (2020). Seria o biocarvão uma alternativa potencial para o desenvolvimento da agricultura familiar? Uma tentativa de consolidação de tecnologias sociais com foco na dinâmica do C no solo. Cadernos de Agroecologia, 15(2) HAMER, U., MARSCHNER, B., BRODOWSKI, S., AMELUNG,W. (2004) ‘Interactive priming of black carbon and glucose mineralisation’, Organic Geochemistry, vol 35 pp823–830 HAUSTEEN, B. 1983. Flavonoids, a class of natural products of high pharmacological potency. Biochem. Pharm., 32: 1141-1148. HITOSHI,T., AI, F., HARUO, H. (2002) ‘Development of advanced utilization technologies for organic waste: (Part 1) Greenhouse gas and nutrient salt adsorption properties of wood– based charcoal’, Denryoku Chuo Kenkyujo Abiko Kenkyujo Hokoku, Research Report of Abiko Research Laboratory, no U02010 HOCKADAY,W. C. (2006) The Organic Geochemistry of Charcoal Black Carbon in the Soils of the University of Michigan Biological Station, PhD thesis, Ohio State University, US HOCKADAY,W. C., GRANNAS, A. M., KIM, S. AND HATCHER, P. G (2006) ‘Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution 70 mass spectral analysis of dissolved organic matter from a fire-impacted forest soil’, Organic Geochemistry, vol 37, pp501–510. HOLANDA, E. B. N. Morfologia e propriedades mecânicas da fibra de sisal unidirecional e em sobreposição de compósito com resina epóxi. Universidade Federal do Rio Grande do Norte. Natal, 2013 IBÁ - Indústria Brasileira de Árvores - Acesso://www.abaf.org.br/wpcontent/uploads/2020/10/relatorio-iba-2020.pdf no dia 29.12.2022 INTERNATIONAL BIOCHAR INITIATIVE (IBI) Guidelines. Standardized Product Definitionandinternational.org/sites/default/files/Guidelines_for_Biochar_That_Is_Use d_in_Soil_Fial.pdf (acessado em 16 outubro de 2022) IPCC (Intergovernmental Panel on Climate Change) (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories, National Greenhouse Gas Inventories Programme, Hayama, Japan, www.ipccnggip.iges.or.jp/public/2006gl/index.html IPCC - Conferência Latino Americana Sobre Meio Ambiente e Responsabilidade Social. Mudança climática 2007: Mitigação e mudanças climáticas, Paris: IPCC, 2007. 36p. Relatório do IPCC/ONU IQBAL, M. O., & YAHYA, E. B. In vivo assessment of reversing aminoglycoside antibiotics nephrotoxicity using Jatropha mollissima crude extract. Tissue and Cell, v. 72, p. 101525, 2021 ISHII,T.; KADOYA, K. (1994) ‘Effects of charcoal as a soil conditioner on citrus and vesiculararbuscular mycorrhizal development’, Journal of the Japanese Society of Horticultural Science, vol 63, pp529–535 JESUS, F. N.; DAMASCENO, J. C. A.; BARBOSA, D. H. S. G.; MALHEIRO, R.; PEREIRA, J. A.; SOARES, A. C. F. Control of the banana burrowing nematode using sisal extract. Agronomy for Sustainable Development, v. 35, n. 2, p. 783 - 791, 2015. Disponível em https://doi 10.1007/s13593-014-0264-z. Acesso em 15 de set. 2022 JOSEPH, S. D. et al. An investigation into the reactions of biocharin soil. Australian Journal of Soil Research, Victoria, v. 48, n. 7, p. 501-515, 2010. KEILUWEIT, M.; NICO, P. S.; JOHNSON, M. G.; KLEBER, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science and Technology, v. 44, n. 4, p. 1247–1253, 2010 KERCHER, A. K.; NAGLE, D. C. (2002) ‘Evaluation of carbonized medium-density fiberboard for electrical applications’, Carbon, vol 40, pp1321–1330 KHALIL RA, SELJESKOG M, HUSTAD JE (2008) Sulfur abatement in pyrolysis of straw pellets. Energy and Fuels 22, 2789– 2795. doi:10.1021/ef8001235. KISHIMOTO S, SUGIURA G (1985) Charcoal as a soil conditioner. In Symposium on Forest Products Research International: Achievements for the Future. Vol. 5, pp. 12/23/1–12/23/15. CSIR, Pretoria. KLEBER M, HOCKADAY W, NICO PS (2015) Characteristics of biochar: macro-molecular properties. In Biochar for Environmental Management: Science, Technology and Implementation. 2nd edn. (Eds J Lehmann, S Joseph). pp. 111–137. Routledge, London. KNOEPP, J. D., DEBANO, L. F., NEARY, D. G. (2005) Soil Chemistry, RMRS-GTR 42-4, US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden, UT KNUDSEN, J. N., JENSEN, P. A., LIN,W. G. FRANDSEN, F. J., DAM-JOHANSEN, K. (2004) ‘Sulfur transformations during thermal conversion of herbaceous biomass’, Energy and Fuels, vol 18, pp810–819 KOOKANA RS, SARMAH AK, VAN ZWIETEN L, KRULL E, SINGH B (2011) Biochar application to soil: agronomic and environmental benefi ts and unintended consequences. Advances in Agronomy 112, 103–143. doi:10.1016/ B978-0-12-385538-1.00003-2. KOUL, O.; ISMAN, M. B.; KETKAR, C. M. Properties and uses of neem, Azadirachta indica. Canadian Journal of Botany, Ottawa, v.68, n.1, p.1-11, 1990. KRULL, E.S.; BALDOCK, J.A.; SKJEMSTAD, J.O.; SMERNIK, R.J. Characteristics of biochar: Organo-chermical properties. IN: LEHMANN, J.; JOSEPH, S., eds. Biochar for Environmental Management: Science and Technology, London: Earthscan, 2009. p.67- 84. KRULL, E. S., SKJEMSTAD, J. O., GRAETZ, D., GRICE, K., DUNNING,W., COOK, G. D., PARR, J. F. (2003) ‘13C-depleted charcoal from C3 and C4 grasses and the role of occluded carbon in phytoliths’, Organic Geochemistry, vol 34, pp1337–1352 KUMAR, V., SHARMA, N., UMESH, M., SELVARAJ, M., AL-SHEHRI, B. M., CHAKRABORTY, P., ... & MAITRA, S. S. Emerging challenges for the agro-industrial food waste utilization: A review on food waste biorefinery. Bioresource Technology, p. 127790, 2022. https://doi.org/10.1016/j.biortech.2022.12779 LABEGALINI, André. Obtenção de biochar a partir da pirólise rápida da torta de PinhãoManso: Uso como adsorvente e suporte. 117 f. (Dissertação, Química Ambiental) – Agroquímica, Universidade Federal de Lavras – MG http://repositorio.ufla.br/bitstream/1/1639/2/DISSERTACAO_Obten%C3%A7%C3%A3o%2 0de%20biochar%20a%20partir%20da%20pir%C3%B3lise....pdf>. Acesso 09 de mai. 2022. LAINE, J., YUNES, S. (1992) ‘Effect of the preparation method on the pore size distribution of activated carbon from coconut shell’, Carbon, vol 30, pp601–604 LAIRD, D.; FLEMING, B.Q.; WANG, R.H.; KARLEN, D. et al. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, v. 158, n. 3-4, p. 436–442, 2010. LAL, R. (2004) ‘Soil carbon sequestration impacts on global climate change and food security’, Science, vol 304, pp1623–1627. LAL, R. Challenges and opportunities in soil organic matter research. European Journal of Soil Science, v. 60, n. 2, p. 158–169, 2009. LEE, Y. et al. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 ◦C. Bioresour. Technol., v.148, p. 196–201, 2013. LEHMANN J (2007) Bio-energy in the black. Frontiers in Ecology and the Environment 5, 381–387. doi:10. 1890/1540-9295(2007)5[381:BITB]2.0.CO;2 LEHMANN, J., DA SILVA JR., J. P., STEINER, C., NEHLS, T., ZECH,W., GLASER, B. (2003) ‘Nutrient availability and leaching in an archaeological Anthrosol and a Ferrasol of the Central Amazon basin: Fertilizer, manure, and charcoal amendments’, Plant and Soil, vol 249, pp343–3578 LEHMANN, J. (2007) ‘Bio-energy in the black’, Frontiers in Ecology and the Environment, vol 5, pp381–387 LEHMANN, J. AND JOSEPH, S.: Biochar for environmental management: An introduction, in Biochar for environmental management science and sechnology, edited by J. Lehmann and S. Joseph, Earthscan,UK.,2009.Disponívelem:https://www.taylorfrancis.com/books/e/9781134489534/c hapters/10.4324/9780203762264-8. Acessado em 13/09/2022. LEHMANN, J. et al. Biochar effects on soil biota – A review. Soil Biology e Biochemistry, 43, 1812–1836. 2011. LEHMANN J, GAUNT J, AND RONDON M. Biochar sequestration in terrestrial ecosystems: a review. Mitig. Adapt Strategy Global Change 11: 403–27, 2006 LIANG, X.-Q., JI, Y. J., HE, M.-M., SU, M.-M., LIU, C., TIAN, G.-M., . A simple N balance assessment for optimizing the biochar amendment level in paddy soils. Commun. Soil Sci. Plant Anal. 45, 1247–1258. 2014. LIMWIKRAN, T., KHEORUENROMNE, I., SUDDHIPRAKARN, A., PRAKONGKEP, N., GILKES, R.J. Dissolution of K, Ca, and P from biochar grains in tropical soils. Geoderma, v. 312, p. 139–150, 2018. LIU, Y., HU, H. X-ray diffraction study of bamboo fibres treated with NaOH. Fibers Polym.19, pag.735–739, 2008 LÔBO, K.M.S.; ATHAYDE, A.C.R.; SILVA, A.M.A.; RODRIGUES, F.F.G.; LÔBO, I.S.; BEZERRA, D.A.C.;COSTA, J.G.M. 2010 Avaliação da atividade antibacteriana e prospecção fitoquímica de Solanum paniculatum Lam. e Operculina hamiltonii (G. Don) D. F. Austin & Staples, do semiárido paraibano. Rev. Bras. Pl. Med., Botucatu, v.12, n.2, p.227-233. LORENZ, K. & LAL, R. (2014). Biochar application to soil for climate change mitigation by soil organic carbono sequestration. Journal of Plant Nutrition and Soil Science, v. 177, n.5, pp. 651-670. LUNDGREN, W. J. C.; SILVA, L. F.; ALMEIDA, A. Q. Influência das espécies exóticas arbóreas urbanas na área de cobertura da cidade de Serra Talhada – PE. Revista da Sociedade Brasileira de Arborização Urbana, Piracicaba, v. 8, n. 3, p.96-107, 2013. LUO, Y., DURENKAMP, M., De Nobili, M., Lin, Q., Devonshire, B.J., Brookes, P.C. Microbial biomass growth,following incorporation of biochars produced at 350°C or 700°C, in a siltyclay loam soil of high and low pH. Soil Biology and Biochemistry, 57:513-523, 2013. LUXMOORE, R. J. (1981) ‘Microporosity, mesoporosity, and macroporosity of soil’, Soil Science Society of America Journal, vol 45, pp671–672 MACHADO, Gilmara Oliveira et al. Influência da temperatura final de carbonização nas características físicas, químicas e energéticas do carvão de cinamomo (Melia azedarach L.) Influence of temperature carbonization in physical, chemical and energy of charcoal from cinamomo. AMBIÊNCIA, v. 10, n. 1, p. 83-96, 2014. MACHADO, P. L. O. A. Carbono do solo e a mitigação da mudança climática global. Química Nova, v.28, p.329-334, 2005. http:// dx.doi.org/10.1590/S0100-40422005000200026 MADARI, B. E. et al. Carvão Vegetal como condicionador de solo para Arroz de Terras Altas (Cultivar Primavera): um estudo prospectivo. Santo Antônio de Goiás, GO: Embrapa Arroz e Feijão. 06p. (Embrapa Arroz e Feijão. Comunicado Técnico, 125). 2006 MADARI, B.E.; PETTER, F.A.; CARVALHO, M.T.M.; MACHADO, D.M.; SILVA, O.M.; FREITAS, F.C; OTONI, R.F. Biomassa carbonizada como condicionante de solo para a cultura do arroz de terras altas, em solo arenoso, no Cerrado: efeito imediato para a fertilidade do solo e produtividade das plantas. Comunicado Técnico, Embrapa, Goiânia, Brazil, 197, pp 8, 2010 MANYÀ, J. J. Pyrolysis for Biochar Purposes: A Review to Establish Current Knowledge Gaps and ResearchNeeds. Environmental Science & Technology, [s.l.], v. 46, n. 15, p.7939-7954, 7 ago. 2012. American Chemical Society (ACS). http://dx.doi.org/10.1021/es301029g MARSCHNER, H. (1995) The Mineral Nutrition of Higher Plants, Academic Press, San Diego, CA MARTIN, A. R. et al. Caracterização química e estrutural de fibra de sisal da variedade Agave sisalana. Polímeros, São Carlos, v. 19, n. 1, pag. 40-46, 2009. MARTÍNEZ, M. L.,TORRES, M. M., GUZMÁN, C. A., MAESTRI,D. M. (2006) ‘Preparation and characteristics of activated carbon from olive stones and walnut shells’, Industrial Crops and Products, vol 23, pp23–28 MARTINEZ, S. S. O Nim – Azadirachta indica – natureza, usos múltiplos, produção. Londrina: IAPAR, 142p, 2002. MARY, G. S. et al. Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. International Journal of Recycling of Organic Waste in Agriculture, New York, v. 5, n. 1, p. 43-53, Mar. 2016. MASIELLO, C. A., DRUFFEL, E. R. M. (1998) ‘Black carbon in deep-sea sediments’, Science, vol 280, pp1911–1913 MATSUBARA,Y.-I., HASEGAWA, N. AND FUKUI, H. (2002) ‘Incidence of Fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments’, Journal of the Japanese Society of Horticultural Science, vol 71, pp370– 374 MAYER, Z. A.; ELTON, Y.; STENNETT, D.; SCHROEDER, E.; APFELBACHER, A.; HORNUNG, A. Characterization of engineered biochar for Soil Management. Environmental Progress & Sustainable Energy, v.33, p.490-496, 2014. http://dx.doi.org/10.1002/ep.11788 MBAGWU, J. S. C. (1989) ‘Effects of organic amendments on some physical properties of a tropical Ultisol’, Biological Wastes, vol 28, pp1–13 MCBEATH AV, SMERNIK RJ (2009) Variation in the degree of aromatic condensation of chars. Organic Geochemistry 40, 1161–1168. doi:10.1016/j.orggeochem.2009.09.006. MEDINA, J. C. - “O sisal”, Secretaria da Agricultura do Estado de São Paulo, São Paulo 1954 MEGGIATO, JR. D. et al. Sisal fibers: Surface chemical modification using reagent obtained from renewable source, characterization of hemicellulose and lignin as model study. Journal of Agriculture and Food Chemistry, v. 55, pag 8576–8584, 2007 MELILLO, J. M., ABER, J. D. AND MURATORE, J. F. (1982) ‘Nitrogen and lignin control of hardwood leaf litter decomposition dynamics’, Ecology, vol 63, pp621–626 MILLER, R. M. AND JASTROW, J. D. (1990) ‘Hierarchy of root and mycorrhizal fungal interactions with soil aggregation’, Soil Biology and Biochemistry, vol 22, pp579–584 MIYASAKA, S., OHKAWARA, T., NAGAI, K., YAZAKI, H., SAKITA, M.N. Técnicas de produção e uso do Fino de Carvão e Licor Pirolenhoso In: ENCONTRO DE PROCESSOS DE PROTEÇÃO DE PLANTAS: Controle ecológico de pragas e doenças, 1., Botucatu. Resumo. p.161-176. 2001. Disponível em: . Acesso em 13 abril 2023 MUKHERJEE A, LAL R (2014) Th e biochar dilemma. Soil Research 52, 217. doi:10.1071/SR13359. MUKHERJEE A, ZIMMERMAN AR, HARRIS W (2011) Surface chemistry variations among a series of laboratory produced biochars. Geoderma 163, 247–255. doi:10.1016/j.geoderma.2011.04.021. MUKOME, F.N.D.; ZHANG, X.; SILVA, L.C.R.; SIX, J.; PARIKH, S.J. Use of chemical and physical characteristics to investigate trends in biochar feedstocks. Journal of Agricultural and Food Chemistry, Washington, v. 61, p. 2196-2204, 2013. MWAIKAMBO, L. Y., & ANSELL, M. P. (2002). Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Journal of Applied Polymer Science, 84(12), 2222-2234. https://doi.org/10.1002/app.10460 NETO, L. C. I., MARTINS, F. M. Anatomia dos órgãos vegetativos de Agave sisalana Perrine ex EN-GELM (Agavaceae). Revista Caatinga. 2012. NAKASHIMA, G. T. USE of sugarcane trash for solid biofuel production: physicochemical characterization and influence of storage time.2016,p 59. Universidade Federal de São Carlos,Sorocaba,2016. NEARY, D. G., KLOPATEK, C. C., DEBANO, L. F. AND FOLLIOTT, P. F. (1999) ‘Fire effects on belowground sustainability: a review and synthesis’, Forest Ecology and Management, vol 122, pp51–71 NOVAK JM, BUSSCHER WJ, LAIRD DL, AHMEDNA M, WATTS DW, NIANDOU MAS (2009) Impact of biochar amendment on fertility of a south-eastern coastal plain soil. Soil Science 174, 105–112. doi:10.1097/SS. 0b013e3181981d9a NOVAK JM, LIMA I, XINGB, GASKIN JW, STEINER C DAS KC., SCHOMBERG H. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann. Environmental. Sci. 2009:3(843); 195–206. NEMA - Núcleo de Ecologia e Monitoramento Ambiental da Universidade Federal do Vale do São Francisco (UNIVASF). Disponível em NEMA / UNIVASF. Acesso em 18 de Junho de 2023 OBIA, A.; MULDER, J.; MARTINSEN, V.; CORNELISSEN, G.; BØRRESEN, T. 2016. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil and Tillage Research 155: 35–44. OGAWA, M.,YAMBE,Y. AND SUGIURA,G. (1983) ‘Effects of charcoal on the root nodule formation and VA ycorrhiza formation of soy bean’, The Third International Mycological Congress (IMC3), Abstract 578 OKUNO T, SONOYAMA N, HAYASHI JI, LI CZ, SATHE C, CHIBA T (2005) Primary release of alkali and alkaline earth metallic species during the pyrolysis of pulverized biomass. Energy and Fuels 19, 2164–2171. doi:10.1021/ ef050002a OLIVEIRA, A.C. Sistema forno-fornalha para produção de carvão vegetal. 2012. 74p. Dissertação (Mestrado), Universidade Federal de Viçosa, Viçosa-MG. OLIVEIRA, ARTHUR VINÍCIUS DE. 2021.Estudo da produção e caracterização de Bio char oriundo da pirólise do resíduo de Maçã e suas aplicações [recurso eletrônico] / Arthur Vinícius de Oliveira. 2021. OLIVEIRA, D.M. 2017. Biocarvão e adubação fosfatada no crescimento de mudas de castanheira-do-brasil em latossolo amarelo da Amazônia Central. Tese de doutorado, Universidade Estadual "Júlio de Mesquita Filho", Campus Botucatu. Botucatu, São Paulo. 96p. OLIVEIRA, F. D. A. et al. Desenvolvimento e concentração de nitrogênio, fósforo e potássio no tecido foliar da berinjela em função da salinidade. Revista Brasileira de Ciências Agrárias, v. 6, n. 1, p. 37-45, 2011. PANDOLFO, A. G., AMINI-AMOLI, M. AND KILLINGLEY, J. S. (1994) ‘Activated carbons prepared from shells of different coconut varieties’, Carbon, vol 32, pp1015–1019 PARR, J. F. (2006) ‘Effect of fire on phytolith coloration’, Geoarchaelogy – An International Journal, vol 21, pp171–185 Parr, J. F. and Sullivan, L. A. (2005) ‘Soil carbon sequestration in phytoliths’, Soil Biology and Biochemistry, vol 37, pp117–124 PARR, J. F. AND SULLIVAN, L. A. (2005) ‘Soil carbon sequestration in phytoliths’, Soil Biology and Biochemistry, vol 37, pp117–124 PASTOR-VILLEGAS, J., PASTOR-VALLE, JF, MENESES RODRÍGUEZ, JM E GARCÍA, M. (2006) 'Estudo de carvões de madeira comercial para a preparação de adsorventes de carbono', Journal of Analytical and Applied Pyrolysis, vol 76, pp103–108 PAUL, E. A. (ed) (2007) Soil Microbiology, Ecology and Biochemistry, third edition, Elsevier, Amsterdam,The Netherlands PEAKE LR, REID BJ, TANG X. Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils. Geoderma. 2014: 235–236; 182– 190. PETTER, F. A.; MADARI, B. E. Biochar: Agronomic and environmental potential in Brazilian savannah soils. Revista Brasileira Engenharia Agricrícola e Ambiental, v.16, p.761-768, 2012. http:// dx.doi.org/10.1590/S1415-43662012000700009 PETTER, F. A.; MADARI, B. E.; SILVA, M. A. S.; CARNEIRO, M. A. C.; CARVALHO, M. T., MARIMON JR, B. H.; PACHECO, L. P. Soil fertility and upland rice yield after biochar application in the Cerrado. Pesquisa Agropecuária Brasileira, Brasília, v.47, n.5, p.699-706, 2012. PICANCIO, A. C. S. Gestão da qualidade aplicada à melhoria do processo de produção de carvão vegetal. 2011. Dissertação (Mestrado) - Ciência Florestal, Universidade Federal de Viçosa. Viçosa, 2011. POLETTO, M. Assessment of the thermal behavior of lignins from softwood and hardwood species. Maderas. Ciencia y tecnología, v. 19, n. 1, p. 63-74, 2017. PRAKONGKEP N, GILKES RJ, WIRIYAKITNATEEKUL W (2015) Forms and solubility of plant nutrient elements in tropical plant waste biochars. Journal of Plant Nutrition and Soil Science 178, 732–740. doi:10.1002/ jpln.201500001. PRAKONGKEP, N.; GILKES, R. J.; WIRIYAKITNATEEKUL, W. Forms and solubility of plant nutrient elements in tropical plant waste biochars. Journal of Plant Nutrition and Soil Science, v. 178, n. 5, p. 732–740, 2015. PRATIWI, E.P.A., SHINOGI, Y., 2016. Rice husk biochar application to paddy soil and its effects on soil physical properties, plant growth, and methane emission. Paddy Water Environ. 14, 521–532. https://doi.org/10.1007/s10333-015-0521-z PRESTON, C. M. AND SCHMIDT, M.W. I. (2006) ‘Black (pyrogenic) carbon: A synthesis of current knowledge and uncertainties with special consideration of boreal regions’, Biogeosciences, vol 3, pp397–420 PRESTON CM, SCHMIDT MWI (2006) Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 3, 397–420. doi:10.5194/bg-3-397-2006. PRESTON, C. M. AND SCHMIDT, M.W. I. (2006) ‘Black (pyrogenic) carbon: A synthesis of current knowledge and uncertainties with special consideration of boreal regions’, Biogeosciences, vol 3, pp397–420 PROTÁSIO, T. P.; DA COSTA, J. S.; SCATOLINO, M. V.; LIMA, M. D. R.; DE ASSIS, M. R.; DA SILVA, M. G.; BUFALINO, L.; DIAS JÚNIOR, A. F.; TRUGILHO, P. F. Revealing the influence of chemical compounds on the pyrolysis of lignocellulosic wastes from the Amazonian production chains. International Journal of Environmental Science and Technology, p. 1-18, 2021. RAIJ, B. V. Correção do solo. In: RAIJ, B. van. (Ed.). Fertilidade do solo e manejo de nutrientes. Piracicaba: IPNI, p. 352-375. 2011. REZENDE, E. I. P.; ANGELO, L. C.; DOS SANTOS, S. S.; MANGRICH, A. S. Biocarvão (Biochar) e Sequestro de Carbono. Rev. Virtual Quim., 3(5), 426-433, 2011. RIBEIRO, S. R., FORTES, C. C., OLIVEIRA, S. C. C., CASTRO, C. F. S. Avaliação da atividade antioxidante de solanum paniculatum (solanaceae). Arq. Ciênc. Saúde Unipar, Umuarama, v. 11, n. 3, p. 179-183, set./dez. 2007. RIBEIRO, V.; VIEIRA, I. L. B. F.; PASSOS, D. C. S. dos.; SILVA, E. M. de.; VALE, C. R. do.; FELICIO, L. R.; FERREIRA, D. H.; VIEIRA, P. M.; CARVALHO, S de. 2009. Ausencia de mutagenicidade de solanum paniculatum L. em celulas somáticas de Drosophila melanogaster: SMART/ asa. Rer Biol. Neotrop. 6 (2): 27-33. RILLIG, M. C.,WRIGHT, S. F. AND EVINER,V.T. (2002) ‘The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species’, Plant and Soil, vol 238, pp325–333 ROBSON, A.D.,ABBOTT, L. K. AND MALAJCZUK,N. (1994) ‘Management of mycorrhizas in agriculture, horticulture, and forestry’, in Proceedings of the International Symposium on Management of Mycorrhizas in Agriculture,Horticulture, and Forestry, 28 September–2 October 1992, Perth, Australia ROGOVSKA, N., LAIRD, D.A., RATHKE, S.J., KARLEN, D.L. 2014. Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma 230–231, 340–347. https://doi.org/10.1016/j.geoderma.2014.04.009. RONDON, M., LEHMANN, J., RAMIREZ, J., HURTADO, M. (2007) ‘Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions’, Biology and Fertility of Soils, vol 43, pp699–708 ROSA, M. F. ; SOUZA FILHO, M S. M.; Valorização de resíduos da agroindústria. II Simpósio Internacional sobre Gerenciamento de Resíduos Agropecuários e Agroindustriais, 2011. RUMPEL, C., CHAPLOT,V., PLANCHON,O., BERNADOU, J.,VALENTIN, C., MARIOTTI, A. (2006) ‘Preferential erosion of black carbon on steep slopes with slash and burn agriculture’, Catena, vol 65, pp30–40 SAITO, M. (1990) ‘Charcoal as a micro habitat for VA mycorrhizal fungi, and its practical application’, Agriculture, Ecosystems, and the Environment, vol 29, pp341–344 SAITO, M., MARUMOTO,T. (2002) ‘Inoculation with arbuscular mycorrhizal fungi:The status quo in Japan and the future prospects’, Plant and Soil, vol 244, pp273–279 SAMONIN,V.V., ELIKOVA, E. E. (2004) ‘A study of the adsorption of bacterial cells on porous materials’, Microbiology, vol 73, pp810–816 SANTOS JUNIOR, José Mendes dos Santos - PELLETS DE BIOCHAR COMO CONDICIONADOR DE SOLO NA PRODUÇÃO E NUTRIÇÃO DE UROCHLOA BRIZANTHA CV. BRS PAIAGUÁS - José Mendes dos Santos Júnior, Montes Claros, 2022. SANTOS, J. L. S. Biocarvão como condicionador da fertilidade e da microbiota de solo de Cerrado cultivadocom soja. 102 f. Tese (Doutorado em Agronomia) - Escola de Agronomia, Universidade Federal de Goiás, Goiânia, 2013. SANTOS NETO, O. D.; KARSBURG, I. V. e YOSHITOME, M. Y. Viabilidade e germinabilidade polinica de populacoes de Jurubeba (Solanum paniculatum). Revista de Ciências Agro-Ambientais, Alta Floresta, v.4, n.1 p.67-74, 2006. SARFARAZ, Q.; DA SILVA, L. S.; DRESCHER, G. L.; ZAFAR, M.; SEVERO, F. F.; KOKKONEN, A.; DAL MOLIN, G.; SHAFI, M. I.; SHAFIQUE, Q.; SOLAIMAN, Z. M. Characterization and carbon mineralization of biochars produced from different animal manures and plant residues. Scientific Reports, v. 10, n. 955, p. 1-9, 2020. SAXENA, R.C. Naturally ocurrig psticides and their potential. In: L. W. Shemilt (ed.). Chemistry and World Food Supplies: The New Frontiers, Pergamon Press, Oxford, 664p, 1983. SCHNITZER, M. I., MONREAL, C. M., JANDL, G., LEINWEBER, P. (2007) ‘The conversion of chicken manure to biooil by fast pyrolysis II. Analysis of chicken manure, biooils, and char by curie-point pyrolysis-gas chromatography/mass spectrometry (Cp Py-GC/MS)’, Journal of Environmental Science and Health B, vol 42, pp79–95 SCHMIDT, M.W. I., NOACK, A. G. (2000) ‘Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges’, Global Biogeochemical Cycles, vol 14, pp777–794. SCHNITZER, M. I., MONREAL, C. M., JANDL,G. AND LEINWEBER, P. (2007) ‘The conversion of chicken manure to biooil by fast pyrolysis II. Analysis of chicken manure, biooils, and char by curie-point pyrolysis-gas chromatography/mass spectrometry (Cp Py-GC/MS)’, Journal of Environmental Science and Health B, vol 42, pp79–95 SCHULZ, H.; GLASER, B. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. Journal of Plant Nutrition and Soil Science, 175, 410-422, 2015. dx.doi.org/10.1002/jpln.201100143 SHENBAGAVALLI, S.; MAHIMAIRAJA, S. Characterization and effect of biochar on nitrogen and carbon dynamics in soil. International Journal of Advanced Biological Research, 2: 249- 255, 2012. SIEBENEICHLER, E. A.; DA COSTA, L. M.; FIGUEREDO, N. A.; TRONTO, J.; ROCHA, P. A. Influência de temperatura e taxas de aquecimento na resistência mecânica, densidade e rendimento do carvão da madeira de Eucalyptus cloeziana. Revista Ciência da Madeira - RCM, v. 8, n. 2, p. 82–94, 2017 SILBER A, LEVKOVITCH I, GRABER ER (2010) pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications. Environmental Science and Technology 44, 9318–9323. doi:10.1021/ es101283d. SILVA, L.B. et al. Estudo comparativo da madeira de Mimosa ophthalmocentra Mart. ex Benth e Mimosa tenuiflora (Willd.) Poir. (Fabaceae-mimosoideae) na Caatinga nordestina. Acta Bot. Bras., Feira de Santana, vol.25, n.2. Apr./June. 2011. SILVA, O. R. R.; BELTRÃO, N. R. R. F. - “O Agronegócio do Sisal no Brasil”, Embrapa, Brasília 1999. SILVA, O. R. R. F. da; et al. Cultivo do Sisal no Nordeste Brasileiro, Circular Técnica n. 123, Embrapa, Campina Grande, PB, 2008. SINGH B, SINGH BP, COWIE AL (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Australian Journal of Soil Research 48, 516. doi:10.1071/SR10058. SKJEMSTAD, J. O., GRAETZ, R. D. (2003) ‘The impact of burning on the nature of soil organic matter in Australia’, Agronomia, vol 37, pp85–90 SMERNIK, R. J., KOOKANA, R. S., SKJEMSTAD, J.O. (2006) ‘NMR characterization of 13Cbenzene sorbed to natural and prepared charcoals’, Environmental Science and Technology, vol 40, pp1764–1769 SMITH, F. A., WHITE, J.W. C. (2004) ‘Modern calibration of phytolith carbon isotope signatures for C3/C4 paleograssland reconstruction’, Palaeogeography, Palaeoclimatology, Palaeoecology, vol 207, pp277–304 SOHI, S.P.; KRULL, E.; LOPEZ-CAPEL, E.; BOL, R. A review of biochar and its use and function in soil. Advances in Agronomy, 105: 47-82, 2010. SONG, W.; GUO, M. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, v. 94, p. 138-145, 2012 SOTO, J.; DIAZ, J.; RAMIREZ; M. Diagnostico florístico y fitosanitario de las espécies arbóreas presentes en la parroquia Francisco Eugenio Bustamante, Maracaibo, estado Zulia, Venezuela. Revista de la Facultad de Agronomía (LUZ), Maracaibo, v. 31, p.341-361, 2014. SOUZA, M. H. 2019. Caracterização e efeitos de biocarvões para uso agronômico em solo arenoso. Tese de doutorado. Universidade federal de mato grosso, faculdade de agronomia e zootecnia. Programa de Pós-Graduação em Agricultura Tropical, 150p. STALS, M.; THIJSSEN, E.; VANGRONSVELD, J.; CARLEER, R.; SCHREURS, S.; YPERMAN, J. Flash pyrolysis of heavy metal contaminated biomass from phytoremediation: Influence of temperature, entrained flow and wood/leaves blended pyrolysis on the behaviour of heavy metals. Journal of Analytical and Applied Pyrolysis, v. 87, n. 1, p. 1–7, 2010. STEINBEISS, S., GLEIXNER, G. & ANTONIETTI, M. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biology & Biochemistry, v. 41, p. 1301– 1310, 2009. STEVENSON, F.J., COLE, M.A. (1999) Cycles of the Soil, second edition, John Wiley and Sons, Inc, New York, NY SUÁREZ-GARCÍA F, MARTÍNEZ-ALONSO A, FERNÁNDEZ LLORENTE M, TASCÓN JMD (2002) Inorganic matter characterization in vegetable biomass feedstocks. Fuel 81(9), 1161– 1169. doi:10.1016/S0016-2361(02)00026-1. SUDHAKAR,Y., DIKSHIT, A.K. (1999) ‘Kinetics of endosulfan sorption onto wood charcoal’, Journal of Environ Science and Health B, vol 34, pp587–615 TACCINI, M.M. Study of the methodologies of the United Nations Framework Council on Climate, MSc Dissertação, Universidade de São Paulo, Piracicaba, Brazil, pp 87, 2010 TAG, A. T. TAGHIZADEH-TOOSI, A.; CLOUGH, T. J.; SHERLOCK, R. R.; CONDRON, L. M. Effects of Feedstock Type and Pyrolysis Temperature on Potential Applications of Biochar. Journal of Analytical and Applied Pyrolysis, 2016. THIES, J. E.; RILLING, M.C. Characteristics of Biochar: Biological Properties (Chapter 6). In: LEHMANNM, J., JOSEPH, S., eds. Biochar for environmental management: science and technology. London: Earthscan; p. 85-102, 2009. Tiessen, H. and Stewart, J.W. B. (1988) ‘Light microscopy of stained microaggregates:The role of organic matter and microbes in soil aggregation’, Biogeochemistry, vol 5, pp312–322 Tisdall, J. M. and Oades, J. M. (1982) ‘Organic matter and water-stable aggregates in soils’, Journal of Soil Science, vol 33, pp141–163 TOPOLIANTZ, S., PONG, J.-F., BALLOF, S. (2005) ‘Manioc peel and charcoal: a potential organic amendment for sustainable soil fertility in the tropics’, Biology and Fertility of Soils, vol 41, pp15–21. TRELIM. Informações gerais sobre o sisal. Disponível em: . Acesso em: 14 de setembro de 2023. TSUZUKI, E.; MORIMITSU, T.; MATSUI, T. Effect of chemical compounds in pyroligneous acid on root growth in rice plant. Japan Journal Crop Science, Bankyoku, Tokyo, v.66, n.4, p.15-16, 2000. UCHIMIYA M, HIRADATE S (2014) Pyrolysis temperaturedependent changes in dissolved phosphorus speciation of plant and manure biochars. Journal of Agricultural and Food Chemistry 62, 1802–1809. doi:10.1021/jf4053385 ULERY AL, GRAHAM RC, AMRHEIN C (1993) Wood-ash composition and soil pH following intense burning. Soil Science 156, 358–364. doi:10.1097/00010694-19 9311000-00008 USOWICZ, B., LIPIEC, J., ŁUKOWSKI, M., MARCZEWSKI, W., USOWICZ, J. 2016. The effect of biochar application on thermal properties and albedo of loess soil under grassland and fallow. Soil Tillage Res. 164, 45–51. https://doi.org/10.1016/j.still.2016.03.009 UZOMA, K.C., M. INOUE, H. ANDRY, H. FUJIMAKI, Z. ZAHOOR, AND E. NISHIHARA. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manage. 27:205-212. 2011. VALE, A. T. do et al. Caractherization of biomass energy and carbonization of coffee grains (Coffea arabica, L) and (Cedrelinga catenaeformis), duke wood residues. Cerne, Lavras, v. 13, p. 416-420, 2007 VALENTE, O. F. Efeito da constituição química e da densidade da madeira de Eucalyptus grandis na produção de carvão vegetal. Revista Árvore, v.10, n.2, p.151-160, 1986. VASSILEVA CG (2013b) An overview of the composition and application of biomass ash. Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel 105, 19–39. doi:10.1016/j.fuel.2012.10.001 VERHEIJEN, F.; JEFFERY, S.; BASTOS, A.C.; VELDE, M. van der; DIAFAS, I. Biochar application to soils: a critical scientific review of effects on soil properties, processes and functions. Luxembourg: European Commission. 149p. 2010 VILELA, V. L. R.; FEITOSA, T. F.; LÔBO, K; M. da. S.; BEZERRA, D. A. C.; ATHAYDE, A. C. R. Potencial anti-helmíntico da raiz de Solanum paniculatum L. (1762) em ovelhas do semiárido paraibano. Acta Veterinaria Brasilica. v.3, n.1, p.20-24. 2009. Xie T, Reddy KR, Wang C, Yargicoglu E, Spokas K (2015) Characteristics and applications of biochar for environmental remediation: a review. Critical Reviews in Environmental Science and Technology 45, 939–969. doi:10.10 80/10643389.2014.924180. Wardle, D. A., Zackrisson, O. and Nilsson, M.-C. (1998) ‘The charcoal effect in boreal forests: mechanisms and ecological consequences’, Oecologia, vol 115, pp419–426 Warnock, D. D., Lehmann, J., Kuyper,T.W. and Rillig, M. C. (2007) ‘Mycorrhizal responses to biochar in soil – concepts and mechanisms’, Plant and Soil, vol 300, pp9–20. WATERS, C. L.; JANUPALA, R. R.; MALLINSON, R. G.; LOBBAN, L. L. Staged thermal fractionation for segregation of lignin and cellulose pyrolysis products: An experimental study of residence time and temperature effects. Journal of Analytical and Applied Pyrolysis, v. 126, p. 380-389, 2017 WHITE, C. (1991) ‘The role of monoterpenes in soil nitrogen cycling processes in ponderosa pine’, Biogeochemistry, vol 12, pp43–68 WILDING, L. P., BROWN, R. E., HOLOWAYCHUK, N. (1967) ‘Accessibility and properties of occluded carbon in biogenic opal’, Soil Science, vol 103, pp56–61 WILDMAN J, DERBYSHIRE F (1991) Origins and functions of macroporosity in activated carbons from coal and wood precursors. Fuel 70, 655–661. doi:10.1016/0016- 2361(91)90181-9. WU, W. X. et al. Chemical characterization of rice straw-derived biochar for soil amendment. Biomass & Bioenergy, v. 47, p. 268–276, 2012 YAMATO, M., OKIMORI,Y.,WIBOWO, I. F., ANSHIORI, S., OGAWA, M. (2006) ‘Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra YAN, J.-H.; XU, R.-K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use and Management, v. 27, n. 1, p. 110– 115, 2011. YANG, H.; SHENG, K. Characterization of biochar properties affected by different pyrolysis temperatures using visible-near-infrared spectroscopy.International Scholarly Research Network, ISRN Spectroscopy, Volume 2012,7 p. doi:10.5402/2012/712837. YU, C.,TANG.Y., FANG, M., LUO, Z., CEN, K. (2005) ‘Experimental study on alkali emission during rice straw pyrolysis’, Journal of Zhejiang University (Engineering Science), vol 39, pp1435–1444 YUAN JH, XU RK (2011) Th e amelioration eff ects of low temperature biochar generated from nine crop residues on an acidic ultisol. Soil Use and Management 27, 110–115. doi:10.1111/j.1475-2743.2010.00317. YUAN, J. H.; XU, R. K.; ZHANG, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, v. 102, n. 3, p. 3488–3497, 2013 ZABANIOTOU, A., STAVROPOULOS,G. AND SKOULOU,V. (2008) ‘Activated carbon from olive kernels in a two–stage process: Industrial improvement’, Bioresource Technology, vol 99, pp320–326. ZAVALLONI, C., ALBERTI, G., BIASIOL, S., VEDOVE, G.D., FORNASIER, F., LIU, J., PERESSOTTI, A. Microbial mineralization of biochar and wheat straw mixture in soil: a shortterm study. Applied Soil Ecology, v. 50, p. 45-51, 2011.pt_BR
Aparece nas coleções:Serrinha - Dissertações do Mestrado em Ciências Ambientais

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Adson Lima de Oliveira.pdf3,2 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons